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Université Cheikh Anta Diop, Senegal
4 Department of Physics and Department of Mathematics, University of Florida, Gainesville,
FL 32611-8440, USA

E-mail: bengeloun@sun.ac.za and klauder@phys.ufl.edu

Received 6 June 2009, in final form 3 August 2009
Published 28 August 2009
Online at stacks.iop.org/JPhysA/42/375209

Abstract
The notion of ladder operators is introduced for systems with continuous
spectra. We identify two different kinds of annihilation operators allowing
the definition of coherent states as modified ‘eigenvectors’ of these operators.
Axioms of Gazeau–Klauder are maintained throughout the construction.

PACS number: 03.65.−w

1. Introduction

Coherent states are well-known objects with a wide spectrum of application in mathematics
as well as theoretical physics [1–6]. They are generally defined as a set of vectors belonging
to a formal Hilbert space, constrained to obey a set of axioms, that, for the present analysis,
we refer to as Gazeau–Klauder (GK) axioms [4]. Let us recall, as a matter of clarity, this set
of suitable requirements. Given a Hilbert space H and a Hamiltonian operator H, a system
of coherent states of H, say {|J, γ 〉}, is labeled by two real quantities (J, γ ), J � 0, γ ∈ R,
and satisfies the following conditions: continuity in labels (J, γ ); resolution of the identity
I = ∫

dμ(J, γ )|J, γ 〉〈J, γ |; temporal stability: e−itH |J, γ 〉 = |J, γ + ωt〉 for some constant
ω; and the action identity, i.e. 〈J, γ |H |J, γ 〉 = ωJ . In [4], it has been shown that coherent
states fulfilling the GK axioms can be defined for systems with either discrete, continuous or
both discrete and continuous spectra.

A method for constructing coherent states for systems with a discrete spectrum is provided
by the Barut–Girardello eigenvalue problem for an annihilation operator with a lowering action
on the discrete basis. As a specific instance, resolving the problem a|z〉 = z|z〉 for the ordinary
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annihilation operator a satisfying with its adjoint a†, the commutation relation [a, a†] = I,
and z a complex variable, leads to the usual coherent states of the discrete Fock Hilbert space
{|n〉} for the harmonic oscillator. However, the notion of an annihilation operator onto a
continuous basis is, to the best of our knowledge, not defined. Other issues arise immediately
by consistency. Even if such an annihilation operator exists, will the resolution of an eigenvalue
problem for this operator lead to a system of coherent states? Finally, if it does, is this set of
coherent states the same as the one introduced by GK in [4]?

In this paper, we address the above-mentioned issues and find the following answers. It
appears possible to identify at least two simple types of ladder operators for a system with
a continuous spectrum, invoking translation or dilatation5 transformations of the continuous
parameter labeling a continuous spectrum. We solve separately the modified ‘eigenvalue
problem’ generated by each kind of operator and show that the resulting states satisfy the GK
axioms, and so can be legitimately called coherent states. Moreover, these coherent states
reduce to those of GK for a particular set of parameters. Discussions on adjoint operators
associated with these annihilation operators are provided, and we show that these operators
obey a deformed Heisenberg algebra.

The paper is organized as follows. In section 2, we discuss the first type of an annihilation
operator invoking a translation in the continuous parameter of the Hilbert space basis and the
associated set of coherent state solutions of an eigenvalue problem. In section 3, a similar study
is performed for an annihilation operator involving dilatation of the continuous parameter.
Section 4 is devoted to concluding remarks and a short appendix lists some formulas.

2. Annihilator of the first kind and associated coherent states

Let us consider a Hamiltonian operator H > 0 with a nondegenerate continuous spectrum,
and let |E〉 denote the eigenbasis for this operator, namely

H |E〉 = ωE|E〉, 0 < E; 〈E|E′〉 = δ(E − E′). (1)

Units such as h̄ = 1 are used. We will restrict ourself to a system with an infinite spectrum
such that E ∈ (0, +∞). Next, given a real parameter ε > 0, we introduce the following
operator:

aε =
∫ ∞

0
C(E, ε)|E − ε〉〈E| dE, (2)

where C(E, ε) is a free function to be specified satisfying the condition C(E, ε) = 0,
for all 0 < E < ε. A quick inspection shows that, for any state |E〉 with E − ε � 0,
aε|E〉 = C(E, ε)|E − ε〉. We will come back soon to the possibility of ε = 0, and later, the
adjoint operator corresponding to aε will be discussed.

Let us introduce the states |s, γ 〉ε, s ∈ [0, +∞) and γ ∈ (−∞, +∞), by the eigenvalue
problem

aε|s, γ 〉ε = (s e−iγ )ε|s, γ 〉ε. (3)

From the present point of view, in analogy with the discrete case, the usual Barut-Girardello
problem (but for a continuous spectrum) can be recovered for a parameter ε = 1 and z = se−iγ .
The limit ε → 0 implies that the annihilation operator (2) is diagonal in the energy; therefore,
the eigenvalue 1 for any state (3) will constrain a0 to be the identity.

5 These two generic situations, from which the present study is realized, also suggest the definition of a mixed type
of annihilation operator which is not treated here.
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The states |s, γ 〉ε can be expanded as

|s, γ 〉ε =
∫ ∞

0
Kε(E; s, γ )|E〉 dE. (4)

The left-hand side of (3) can be translated (after a change of variable) to become

aε|s, γ 〉ε =
∫ ∞

0
C(E + ε, ε)Kε(E + ε; s, γ )|E〉 dE, (5)

and, when equated with the right-hand side, leads to the functional identity

C(E + ε, ε)Kε(E + ε; s, γ ) = (s e−iγ )εKε(E; s, γ ). (6)

We infer the following relation (after n iterations):

Kε(E + nε; s, γ )

Kε(E + (n − 1)ε; s, γ )
· · · Kε(E + 2ε; s, γ )

Kε(E + ε; s, γ )

Kε(E + ε; s, γ )

Kε(E; s, γ )
=

∏n
k=1(s e−iγ )ε∏n

k=1 C(E + kε, ε)
. (7)

For the sake of simplicity and without loss of generality, let us set E = 0 in the above equation,
which then leads to

Kε(nε; s, γ ) = (s e−iγ )nε∏n
k=1 C(kε, ε)

Kε(0; s, γ ). (8)

Before going further, an analogue relation for (8) for the discrete spectrum is given by ε = 1
and therefore

∏n
k=1 C(k, 1) stands for the generalized factorial that arises for the well-known

nonlinear coherent states.
Fixing a small ε = �E, the convergence of the product

∏n
k=1 C(kε, ε) as n → ∞ is

ensured if and only if the function C(kε, ε) possesses the behavior

C(kε, ε) � 1 + ᾱk�E + O((�E)2), (9)

for a parameter ᾱ depending on ε = �E. In this way, the infinite product becomes

lim
n→∞

n∏
k=1

C(kε, ε) � lim
n→∞ eᾱ

∑n
k=1 k�E = lim

n→∞ eᾱ n(n+1)

2 �E � lim
n→∞ eα n2

2 (�E)2
, (10)

where we introduced ᾱ = α�E, with α still being a free parameter. Then sending both
�E → 0 and n → ∞, one arrives at

lim
n→∞

n∏
k=1

C(kε, ε) = e
1
2 αE2

. (11)

Hence, we are led to

Kε(E; s, γ ) = (s e−iγ )E

e
1
2 αE2

Kε(0; s, γ ), (12)

C(E, ε) = eα(Eε− 1
2 ε2), (13)

where the parameter α and Kε(0; s, γ ) parametrize the remaining freedom. As a consequence,
the eigenstate solutions of the eigenvalue problem (3) have the general form

|s, γ 〉ε = Nε(s)

∫ ∞

0

sE

e
1
2 αE2

e−iγE |E〉 dE, (14)

where Nε(s) = Kε(0; s, γ ) > 0 will play henceforth the role of the normalization factor. The
states (14) coincide with those determined by GK [4] for a given function f (E) = e

1
2 αE2

.
This shows that the eigenvalue problem allows us to uniquely define a set of coherent states
under these circumstances (up to the parameter α).
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The normalization to unity of the states (14) can be achieved by requiring ε〈s, γ |s, γ 〉ε = 1
from which one infers, fixing henceforth α > 0,

(Nε(s))
2 =

[∫ ∞

0
e2Elns−αE2

dE

]−1

= 2

√
α

π
e− (lns)2

α

[
1 − erf

( |lns|√
α

)]−1

, (15)

with erf(·) being the Gaussian error function (see the appendix). Note that this expression
fixes the factor Kε(0; s, γ ) = Nε(s) which does not depend on γ .

Let us check the main GK axioms in a streamlined fashion.

(a) The continuity in labeling (s, γ ) is obvious.
(b) The time evolution: e−itH |s, γ 〉ε = |s, γ + ωt〉ε.
(c) The resolution of the identity∫ +∞

−∞

dγ

2π

∫ +∞

0
dsσ (s)|s, γ 〉εε〈s, γ | =

∫ ∞

0
dsσ (s)(Nε(s))

2
∫ ∞

0
s2Ee−αE2 |E〉〈E|dE

(16)

leads to the Stieljes moment problem∫ +∞

0
dsh(s)s2E = eαE2

, h(s) := σ(s)(Nε(s))
2. (17)

Introducing a new variable u = lns, this problem can be rewritten as∫ +∞

−∞
duh̃(u) e2Eu = eαE2

, (18)

with the solution h̃(u) = e− 1
α
u2

/
√

απ , so that the final measure integrating to unity for
the system of coherent states (14) is given by

σ(s) = 1

s
√

απ
e− 1

α
(lns)2

(Nε(s))
−2. (19)

(d) The action identity can be deduced from the Hamiltonian mean value:

H̃ (s) = 〈s, γ |H |s, γ 〉 = ω(Nε(s))
2
∫ ∞

0

s2E

eαE2 E dE =: ωJ(s), (20)

where the new action variable J (s) is assumed to be invertible versus s. As argued in [4],
if the function H̃ (s)/ω = J (s) is invertible (such a condition can be reached by a strictly
increasing or decreasing function H̃ (s), H̃ ′(s) > 0 or H̃ ′(s) < 0) such that s(J ) can be
determined, then the coherent states |J, γ 〉 := |s(J ), γ 〉 fulfill all axioms of GK, and in
particular are subjected to the action identity: 〈J, γ |H |J, γ 〉 = 〈s(J ), γ |H |s(J ), γ 〉 =
ωJ . The sign of H̃ ′(s) can be tuned by the remaining freedom parametrized by α. It can
be shown that for some values of α > 0, H̃ ′(s) > 0 (H̃ ′(s) is given in the appendix).

We have finally succeeded to show that the eigenvalue problem (3) admits (14) as
eigenvectors, which are, moreover, coherent states of the GK type.

Let us now determine the adjoint operator associated with aε and derive an interesting
property satisfied by these operators. A simple Hermitian conjugation allows us to write

a†
ε =

∫ ∞

0
C∗(E, ε)|E〉〈E − ε| dE =

∫ ∞

0
C∗(E + ε, ε)|E + ε〉〈E| dE, (21)

where C∗(E, ε) = C(E, ε) is again given by (13). The operators aε and a†
ε have the following

algebra:

I(α, ε) = [
aε, a

†
ε

] =
∫ ∞

0

(|C(E + ε, ε)|2 − |C(E, ε)|2) |E〉〈E| dE

=
∫ ∞

0
e2αEε−αε2

(e2αε2 − 1)|E〉〈E| dE, (22)
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which is a diagonal operator in the energy eigenbasis (therefore commutes with the energy
operator) and consists of a deformed version of the Heisenberg algebra. Indeed, one recovers
the quantum Hilbert space unity I at the limit

lim
α→0

I(α, ε)

2αε2
= I. (23)

3. Annihilator of the second kind and associated coherent states

In this section, we discuss a second kind of annihilation operator introduced by scaling of
the parameter E of the continuous Hilbert basis. The states resolving a problem built out
of the annihilation operator are also shown to be of the GK type. To emphasize the partial
similarity in construction, we use the same notation as used in the previous section although
the quantities may differ.

In order to proceed with the analysis, we define the operator

aλ =
∫ ∞

0
C(E, λ)|λE〉〈E| dE, (24)

where 0 < λ < 1 is a real positive parameter6, C(E, λ) parametrizes the freedom in the
definition of aλ still to be specified such that at the limit C(0, λ) = 0. For any state |E〉, we
have aλ|E〉 = C(E, λ)|λE〉; additional discussion of the adjoint (aλ)† will follow.

Built differently in comparison to the previous case, we introduce the states |s, γ 〉λ,
s ∈ [0, +∞) and γ ∈ (−∞, +∞), through a new λ-class of problems:

aλ|s, γ 〉λ = 1

λ
s ln 1

λ

∣∣∣s, γ

λ

〉
λ
. (25)

It is worth noting that this problem is not an eigenvalue problem. In addition, the usual
eigenvalue problem cannot be obtained for any value of λ. However, two specific cases
have to be discussed: the limit λ = 1 and the situation λ = e−1. These generate problems of
the form a1|s, γ 〉1 = |s, γ 〉1 and ae−1 |s, γ 〉e−1 = es|s, eγ 〉e−1 , respectively. Sending λ → 1,
the annihilator (24) is a diagonal operator with an eigenvalue 1; this clearly constrains a1 to
be the identity. For λ = e−1, we are led very close to—but still continuous and thus different
from—-the ordinary Barut–Girardello problem.

The states |s, γ 〉λ can be expanded in the continuous basis as

|s, γ 〉λ =
∫ ∞

0
Kλ(E; s, γ )|E〉 dE, (26)

with Kλ(E; s, γ ) being complex coefficients. The first member of (25) can be put in the form

aλ|s, γ 〉λ =
∫ ∞

0

1

λ
C

(
E

λ
, λ

)
Kλ

(
E

λ
; s, γ

)
|E〉 dE, (27)

and, when equated with the second member, gives

C

(
E

λ
, λ

)
Kλ

(
E

λ
; s, γ

)
= s ln 1

λ Kλ

(
E; s,

γ

λ

)
. (28)

We will assume separation of the variables s and γ in terms of the ansatz Kλ(E; s, γ ) =
K0

λ(E; s) e−iγE , such that the phase function will reproduce both the correct time evolution of
these states and the relation e−iγ · E

λ = e−i γ

λ
·E . Factoring out this phase contribution, one gets

C

(
E

λ
, λ

)
K0

λ

(
E

λ
; s

)
= s ln 1

λ K0
λ(E; s), (29)

6 In fact, nothing prevents one to choose λ � 1; the choice λ ∈ (0, 1] may be considered analogous to aε , in view of
its annihilation (lowering) action, in order to obtain a state |λE〉 with a label λE < E.
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which can be solved along the lines of the previous analysis. First, let us introduce
K̃λ(lnE; s) = K0

λ(E; s) and C̃(lnE, λ) = C(E, λ). By iteration from (29), we find that

K̃λ(lnE − nlnλ; s)

K̃λ(lnE − (n − 1)lnλ; s)
· · · K̃λ(lnE − 2lnλ; s)

K̃λ(lnE − lnλ; s)

K̃λ(lnE − lnλ; s)

K̃λ(lnE; s)

= s−nlnλ∏n
k=1 C̃(lnE − klnλ, λ)

(30)

and setting E = 1, it follows that

K̃λ(−nlnλ; s) = s−nlnλ∏n
k=1 C̃(−klnλ, λ)

K̃λ(0; s). (31)

The same routine for the convergence of the infinite product as n → ∞ and with small
lnλ = � ˜̃E = �(lnE) requires that

C̃(−klnλ, λ) � 1 + β̄k� ˜̃E + O((� ˜̃E)2), (32)

with β̄ depending on lnλ = � ˜̃E. The infinite product becomes

lim
n→∞

n∏
k=1

C̃(−klnλ, λ) � lim
n→∞ eβ̄

∑n
k=1 k� ˜̃E = lim

n→∞ eβ̄ n(n+1)

2 � ˜̃E � lim
n→∞ eβ n2

2 (� ˜̃E)2
. (33)

Here β̄ = β� ˜̃E and β is again a free parameter. In the limit � ˜̃E → 0 and n → ∞, we obtain

lim
n→∞

n∏
k=1

C̃(−klnλ, λ) � e
1
2 β ˜̃E

2

= e
1
2 β(lnE)2

. (34)

We are then able to identify the functions

K0
λ(E; s) = s lnE

e
1
2 β(lnE)2

K0
λ(1; s) (35)

C(E, λ) = eβ((lnE)(lnλ)− 1
2 (lnλ)2), (36)

with β and K0
λ(1; s) free quantities. Solutions of the problem (25) have the general form

|s, γ 〉λ = Nλ(s)

∫ ∞

0

s lnE

e
1
2 β(lnE)2

e−iγE|E〉 dE, (37)

where Nλ(s) = Kλ(1; s) > 0 is the normalization factor. Comparing these states with those
of GK, one ends with the function f (E) = e

1
2 β(lnE)2

uniquely specifying this set of coherent
states.

Insisting on normalizing the states (37), the following relation holds:

(Kλ(1; s))2 = (Nλ(s))
2 =

[∫ ∞

0

s2lnE

eβ(lnE)2 dE

]−1

=
√

β

π
e− (2lns+1)2

4β . (38)

The GK axioms can also be explicitly verified. Omitting the proof of the continuity in labeling
and correct time evolution, both easily obtained, let us address the resolution of the identity.
We have∫ +∞

−∞

dγ

2π

∫ +∞

0
ds ρ(s)|s, γ 〉λλ〈s, γ | =

∫ ∞

0
ds ρ(s)(Nλ(s))

2
∫ ∞

0
s2lnE e−β(lnE)2 |E〉〈E| dE

(39)

inducing the moment problem∫ +∞

0
ds h(s)s2lnE = eβ(lnE)2

, h(s) := ρ(s)(Nλ(s))
2, (40)

6
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which can be solved as previously by using the variable u = ln s. The solution as a function

of u is h̃(u) = e− 1
β
u2

/
√

βπ . Therefore, the overall measure leading to a resolution of unity
for the system of states (37) is

ρ(s) = 1

s
√

βπ
e− 1

β
(lns)2

(Nλ(s))
−2 = 1

sβ
e− 1

4β
(4lns+1) (41)

differing from (19) by the norm factor, and hence yielding a new family of coherent states.
The action identity can be inferred from the expression of the Hamiltonian mean value

H̃ (s) =λ 〈s, γ |H |s, γ 〉λ = ω(Nλ(s))
2
∫ ∞

0

s2lnE

eβ(lnE)2 E dE =: ωJ(s). (42)

The new action variable J (s) has to be inverted in terms of s(J ). The integration (42) can be
performed exactly; one finds J (s), which turns out to be explicitly invertible as

J (s) = H̃ (s)

ω
= e

1
β
(lns+ 3

4 )
, s(J ) = eβlnJ− 3

4 . (43)

The correct variable in terms of which all GK axioms can be reached is J and the associated
coherent states |J, γ 〉λ = |s(J ), γ 〉λ can be written as

|J, γ 〉λ = Nλ(s(J ))

∫ ∞

0

(eβlnJ− 3
4 )lnE

e
1
2 β(lnE)2

e−iγE|E〉 dE. (44)

Concerning the properties of the adjoint operator associated with aλ, we have

(aλ)† =
∫ ∞

0
C∗(E, λ)|E〉〈λE| = 1

λ

∫ ∞

0
C∗

(
E

λ
, λ

) ∣∣∣∣Eλ
〉
〈E| dE, (45)

with C∗(E, λ) = C(E, λ) given by (36). The following λ-deformed relation holds:

I(β, λ) = [aλ, (aλ)†]λ := aλ(aλ)† − 1

λ
(aλ)†aλ

=
∫ ∞

0

1

λ

(
|C∗

(
E

λ
, λ

)
|2 − |C(E, λ)|2

)
|E〉〈E| dE

=
∫ ∞

0
e2β(lnE)(lnλ)−β(lnλ)2 (1 − e2β(lnλ)2

)

λ
|E〉〈E| dE, (46)

which defines a diagonal operator in the energy eigenbasis. This operator characterizes again
a deformed version of the Heisenberg algebra since in the limit

lim
β→0

λI(β, λ)

−2β(ln λ)2
= I, (47)

the ordinary bosonic algebra can be recovered.

4. Conclusion

We have studied ladder operators for systems with continuous and infinite spectra. These
operators are defined through translation or dilatation of the continuous parameter labeling a
given spectrum. We have succeeded in solving, for both cases and in the continuous limit, the
problems defining coherent states generalizing the Barut–Girardello eigenvalue problem in the
discrete case. The resulting coherent states are different for each kind of annihilation operator
and prove to fulfill all the requirements of GK, thus enlarging prime classes of coherent states
with an exact resolution of the identity. Finally, in this construction, we show that new kinds
of deformed Heisenberg algebras are satisfied by the annihilation operator and its adjoint.

7
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Appendix

This appendix lists useful identities.

(i) The Gaussian error functions are defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt, erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x

e−t2
dt. (A.1)

The derivation of the expression of the norm (15) can be performed as follows. Fixing
α > 0, we have

I (s) =
∫ ∞

0
e−α(E− lns

α )
2
+ (lns)2

α dE = e
(lns)2

α

∫ ∞

− lns
α

e−αX2
dX. (A.2)

Then, two cases may occur: (a) If −ln s > 0, then

I+(s) = e
(lns)2

α

∫ ∞

− lns
α

e−αX2
dX = e

(lns)2

α

{∫ ∞

0
−

∫ − lns
α

0

}
e−αX2

dX

= 1

2

√
π

α
e

(lns)2

α

[
1 − erf

(
− lns√

α

)]
, (A.3)

or (b) if −lns < 0, then

I−(s) = e
(lns)2

α

∫ ∞

− lns
α

e−αX2
dX = e

(lns)2

α

{∫ ∞

0
+

∫ 0

− lns
α

}
e−αX2

dX

= 1

2

√
π

α
e

(lns)2

α

[
1 − erf

(
lns√

α

)]
. (A.4)

Finally, for all s, we have

I (s) = e
(lns)2

α

∫ ∞

− lns
α

e−αX2
dX = 1

2

√
π

α
e

(lns)2

α

[
1 − erf

( |lns|√
α

)]
, (A.5)

which has to be inverted before recovering (15).
(ii) Given the Hamiltonian mean value function H̃ (s) (20)

H̃ (s) = 〈s, γ |H |s, γ 〉 = ω(Nε(s))
2
∫ ∞

0

s2E

eαE2 E dE =: ωJ(s),

= ω

√
πerfc

( |ln(s)|√
α

)
ln(s) +

√
αe− ln2(s)

α

√
πα

3
2 erfc

( |ln(s)|√
α

) (A.6)

and using the obvious formula ∂xerf(x) = (2/
√

π) e−x2
, we can obtain the derivative

∂sH̃ (s) as

H̃ ′
α(s) = ω

αs

⎡
⎣− 2 e− ln2(s)

α ln(s)√
απerfc

( |ln(s)|√
α

) +
2 e− 2ln2(s)

α

π
(
erfc

( |ln(s)|√
α

))2 + 1

⎤
⎦ . (A.7)

8
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For α = 1, this expression reduces to

H̃ ′
1(s) = ω

s

[
− 2 e−ln2(s)ln(s)√

πerfc(|ln(s)|) +
2 e−2ln2(s)

π(erfc(|ln(s)|))2
+ 1

]
� 0. (A.8)
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